

 Navigation

 	
 index

 	
 next |

 	django-facebook-graph 0.1 documentation

Welcome to django-facebook-graph’s documentation!

Version: 0.1 structured

Contents:

	Installation
	Add 'facebook' to your INSTALLED_APPS

	Add the middlewares

	Add the URLs

	The App Settings Dict

	The Facebook Javascript SDK

	Create a Facebook App

	Local Facebook development

	Facebook Connect support for your website

	Getting started with django-facebook-graph
	Facebook Connect support for your website

	Using the Graph API

	Sending posts onto a Facebook wall

	Django-facebook-graph reference
	Deauthorization callback

	Testing the deauthorization callback

	Use Cases for django-facebook-graph
	Facebook Connect with Django

	App Tabs and Facebook login

	Login while keeping the App requests

	Fetch a user’s newsfeed

	Deeplinks into Facebook Tabs

	Page Login

	Using django-facebook-graph with FeinCMS
	Facebook Application Extension

	Content Type Extension

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-facebook-graph 0.1 documentation

Installation

Add 'facebook' to your INSTALLED_APPS

The app has a lot of models. To only create the tables you need you have to add
the models that you want separately.
Here is an example:

INSTALLED_APPS = (
 ...
 'facebook',
 'facebook.modules.profile.page',
 'facebook.modules.profile.user',
 'facebook.modules.profile.event',
 'facebook.modules.profile.application',
 'facebook.modules.connections.post',
 ...
)

Add the middlewares

The SignedRequestMiddleware is the main middleware that stores the signed
request in a special session object and allows your app to access it. Most
of the framework expects this middleware to be installed to function correctly.

Because Facebook calls your page initially with POST, you need to pay attention
to put the SignedRequestMiddleware before the CsrfViewMiddleware but after the
SessionMiddleware.

The FakeSessionCookieMiddleware reads the session key from request.GET. This is
necessary for Safari 5.0.1 (OSX Leopard) since that browser does not support sessions in
iFrames. It comes with a template tag, too.

The AppRequestMiddleware adds some tools to help dealing with app requests:

MIDDLEWARE_CLASSES = (
 'django.contrib.sessions.middleware.SessionMiddleware',
 'facebook.middleware.FakeSessionCookieMiddleware', # for Safari 5.0.1
 'facebook.middleware.SignedRequestMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 <other middlewares>,
 'facebook.middleware.AppRequestMiddleware', # optional.
)

Add the URLs

The basic URLconf entry adds the channel URL, the deauthorize view and some
debug tools:

url(r'^facebook/', include('facebook.urls')),

The registration backend URL activates login functionality through Facebook Connect:

url(r'^accounts/', include('facebook.backends.registration.urls')),

The App Settings Dict

This dict stores all the details that facebook provides. You should have an
entry for every app in your project. It is recommended to use different app
(and therefore a different version of this dict) for local development:

FACEBOOK_APPS = {
 'name' : {
 'ID': '?????????',
 'SECRET': '?????????',
 'CANVAS-PAGE': 'https://apps.facebook.com/yourapp',
 'CANVAS-URL': '',
 'SECURE-CANVAS-URL': '',
 'REDIRECT-URL': 'mydomain.com/facebook/redirect/?next=%2F%2Fwww.facebook.com%2Fpages%2F',
 'DOMAIN' : 'localhost.local:8000',
 'NAMESPACE': 'mynamespace',
 }
}

The Facebook Javascript SDK

For any client side Facebook integration you need the Javascript SDK.

Add the fb namespace to the <html> tag:

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:fb="https://www.facebook.com/2008/fbml">

Add this to the header section of your base template:

{% load fb_tags %}
<script type="text/javascript">
 FACEBOOK_APP_ID = '{% fb_app_id %}';
 FACEBOOK_REDIRECT_URL = document.location.protocol + '//' + '{% fb_redirect_url %}';
 FACEBOOK_CHANNEL_URL = '{% url channel %}';
 FACEBOOK_APP_NAMESPACE = '{% fb_app_namespace %}'; // needed for og actions.
</script>
<script type="text/javascript" src="{{ STATIC_URL }}facebook/fb_utils.js"></script>

Or this if you use the FeinCMS page extension to discern between different
Facebook applications in one installation:

{% load fb_tags %}
<script type="text/javascript">
 FACEBOOK_APP_ID = '{% fb_app_id feincms_page.facebook_application %}';
 FACEBOOK_REDIRECT_URL = document.location.protocol + '//' + '{% fb_redirect_url feincms_page.facebook_application %}';
 FACEBOOK_CHANNEL_URL = '{% url channel %}';
</script>
<script type="text/javascript" src="{{ STATIC_URL }}facebook/fb_utils.js"></script>

Add this to the bottom of your base template in the scripts section:

<div id="fb-root"></div>
<script type="text/javascript">
(function(d){
 var js, id = 'facebook-jssdk', ref = d.getElementsByTagName('script')[0];
 if (d.getElementById(id)) {return;}
 js = d.createElement('script'); js.id = id; js.async = true;
 js.src = "//connect.facebook.net/en_US/all.js";
 ref.parentNode.insertBefore(js, ref);
 }(document));
</script>

The Facebook script is loaded asynchronously. Therefore you have to use the FQ,
a simple script queue for inline javascript code that needs the Facebook
object. The FQ is run when the SDK has been loaded and the user login status
determined. Adding code which is run as soon as the Facebook API is ready is
simple:

FQ.add(function() {
 // your code here
});

Create a Facebook App

Create a new Facebook app on https://developers.facebook.com/apps. You need to
have a verified Facebook account. If you don’t, Facebook will ask you to verify
your account. django-facebook-graph uses OAuth 2.0. Activate it in your app
settings:

[image: _images/FB-app-settings.jpg]

Local Facebook development

If you want to develop locally, follow these steps:

	Create a separate app and set http://localhost.local:8000/ as site URL.

	Map localhost.local to 127.0.0.1 in your /etc/hosts file (/private/etc/hosts on OS X)

Now you can open your app on Facebook and it will load the data from your
runserver. On Firefox you can even chose ‘Open Frame in new tab’ for quicker
page reloads, once you’ve opened the page in Facebook and the cookie is set.

For Facebook connect, make sure you use the URL localhost.local:8000 and
not localhost:8000. This will not work. Facebook enforces the Site URL.

Facebook Connect support for your website

The Facebook Connect support consists of two parts: A backend for
django-registration [https://bitbucket.org/ubernostrum/django-registration] which creates users and an authentication
backend which is responsible for the actual login on a Django website.

Setting the authentication backend

We want to handle logins with the default backend first and fall back to
the Facebook authentication backend if the default backend couldn’t handle
the login request:

AUTHENTICATION_BACKENDS = (
 'django.contrib.auth.backends.ModelBackend',
 'facebook.backends.authentication.AuthenticationBackend',
)

Currently django-facebook-graph only supports Facebook Connect with the
Login Button. The Registration Widget is not supported.

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-facebook-graph 0.1 documentation

Getting started with django-facebook-graph

You need to create a Facebook Application on Facebook Developers for nearly
every functionality of django-facebook-graph.

https://developers.facebook.com/apps

For detailed installation instructions check out the Installation section.

Facebook Connect support for your website

Currently the framework supports user login with the facebook login button.
It’s fairly plug and play. Make sure you have added the authentication backend
and login URL as described Installation instructions.

Adding the Facebook login to your website

Make sure your <html> tag contains the necessary XML namespace information
and these FMBL tag to the place where you want the login button to appear:

<fb:login-button scope="email" onlogin="window.location.href='{% url auth_login %}?next=/'"></fb:login-button>

Checkout the facebook documentation on the login button:
http://developers.facebook.com/docs/reference/plugins/login/

Using the Graph API

You can generate a Graph instance with the following command:

from facebook.utils import get_graph
graph = get_graph(request)

To make a Graph request to Facebook, simply use graph.request(). I.e. to get
a certain message object:

fb_message = graph.request('%s' % post_id)

You can also create facebook user objects like so:

from facebook.models import User
user = User(id=graph.me['id'])
user.get_from_facebook(graph=graph, save=True)

django-facebook-graph stores as much data as possible in the session to
minimize requests to Facebook. You can access the session class directly to
get informations about the current user do this:

from facebook.utils import get_session
fb = get_session()
signed_request = fb.signed_request

About the Access Token

Facebook distinguishes between the app access token and the user access token.
A user access token is needed for requests that need a user’s permission. It’s
generally more powerful than an app access token. You should generally get the
user access token when you pass the request argument to the get_graph function.

However, some operations require the app access token, like deleting app
requests or saving user score. You can implicitly get the app access token by
just calling graph = get_graph() without providing the request object,
or explicitly by calling get_static_graph().

Sending posts onto a Facebook wall

Ensure your app has sufficient permissions

This snippet can be used to ask for the publish_stream extended
permission:

function get_publish_perms(callback_fn) {
 FB.login(function(response) {
 if (response.session) {
 if (response.perms) {
 // fb.perms.push(response.perms);
 if (response.perms.indexOf('publish_stream') != -1) {
 callback_fn();
 }
 } else {
 alert('No permission.');
 }
 } else {
 // user is not logged in
 }
 }, {perms:'publish_stream'});
}

To determine whether a permission is already provided you culd use the following
snippet:

FB.getLoginStatus(function(response) {
 fb.loginStatus = response;
 fb.perms = $.parseJSON(response.perms).extended;
}, true);

The second parameter, true causes a reload of the login status. This
adds the permissions to the response too, which is very helpful for us.

The permissions are also loaded into the fb object on page load. So you could
also just try:

if (fb.perms.indexOf('publish_stream') != -1) {
 post_to_wall();
} else {
 FB.login(function(response){
 },
 {perms: 'publish_stream' }
);
}

The logical consequence if the if-statement fails would be to make a call to
FB.login() to show a login window. The problem here is that most browsers
block the popup if it doesn’t follow an immediate user action. It is therefore
recommended to attach the above function to a click event on a button.

Actually create a Facebook wall post

Now that everything else is taken care of actually creating the wall
post is easy:

from facebook.utils import get_graph
def my_view(request, ...):
 graph = get_graph(request)
 graph.put_wall_post('Hello World!', {
 'name': 'Link name',
 'link': 'http://www.example.com/at/this/location/',
 })

It might still be a good idea to enclose the put_wall_post call in
try..except clause.

Keep in mind that if too many users remove a wallpost that had been created
through the Graph API your app will get classified as spam.

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-facebook-graph 0.1 documentation

Django-facebook-graph reference

Deauthorization callback

There is a default url that can be called for the deauthorization callback:

http://<canvas url>/facebook/deauthorize/<app name>/

The app name parameter is optional but needed if you have multiple apps to
decrypt the signed request. The default action is to delete the user model and
all related entries.

Testing the deauthorization callback

If you are logged in to django you can test the deauthorization callback by calling this url:

http://localhost.local:8000/facebook/deauthorize/<app name>/?userid=<user_id>

You will be shown a page like the one in the django admin
that shows you which entries would be deleted on a deauthorization callback.

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-facebook-graph 0.1 documentation

Use Cases for django-facebook-graph

Facebook Connect with Django

You can automatically login a user that has already been authenticated. Add
this to your login.html template:

{% block extra-js %}
{% if not request.user.is_authenticated %}
<script type="text/javascript">
FQ.add(function(){
 if(fb.status == 'connected') {
 window.location = '{% url fb_connect %}?next={% url myview %}';
 }
});
</script>
{% endif %}
{% endblock %}

For views that require a logged in user you could either check the status on
the server with graph.me, or better, on the client side with the following
piece of code:

{% if request.user.is_authenticated %}
FQ.add(function(){
 if (fb.status == 'not_authorized') {
 window.location = '{% url fb_logout %}';
 }
});
{% endif %}

The advantage of checking the status in the browser is that the response time
is usually shorter.

App Tabs and Facebook login

It is not easy to do a deeplink into an app tab. Facebook doesn’t really support it.
The only workaround is using the Redirect2AppDataMiddleware and calling facebook/redirect
with the url urlencoded as app_data parameter.

That’s how it looks:

'REDIRECT-URL': 'http://apps.facebook.com/<MY_APP_NAMESPACE>/facebook/redirect/?next=http%3A%2F%2Fwww.facebook.com%2F<FB_PAGE>%3Fsk%3Dapp_<APP_ID>%26app_data%3D%2<DEEPLINK_URL>%2F',

Make sure you have the canvas url parameters in the developer app set to the root
or wherever facebook should fetch the redirect from.

Login while keeping the App requests

On some browsers you have to make sure that all protocols match. I.e. if your iframe is loaded
via https you cannot redirect to a http url. The problem here is that if Facebook itself is on a
http url the redirect will be to the http url as well.

<fb:login-button scope="email" onlogin="login_redirect();"></fb:login-button>

function login_redirect(){
 window.location = ('https:' == location.protocol ? 'https://' : 'http://')+'yourdomain.com{% url join_team %}{% if request.GET.request_ids %}?request_ids={{ request.GET.request_ids }}{% endif %}';
}

Fetch a user’s newsfeed

This one is tricky due to Facebook’s new privacy policy.
You could might want to use:

graph.request('me/feed')

Unfortunately this returns only your own posts as well as friend’s posts that have
been marked as public. Posts from friends that have been marked as ‘Friends only’ won’t show up.
But you can use:

graph.request('me/home')

This returns the last 25 posts from the user’s wall. Unfortunately this does not really work
with test users.

Deeplinks into Facebook Tabs

Getting a static URL that is shareable on Facebook of a page within a Tab is tricky.
The only way to do deeplinking is to add the path as app_data parameter to the URL and then parse it.
Unfortunately a URL like this will not be accessible by the Facebook linter since it cuts off all GET
parameters of facebook URLs.

A workaround for this is using the canvas URL and top-redirecting into the tab using the path as
app_data parameter.

That’s where the redirect_to_page decorator comes in. Decorate your index view and every view that might
get called directly and it checks if the page is correctly embedded within a Facebook page.
If it’s not it will redirect the user into the tab.

The decorator needs a new value in the app_dict. A list of allowed Facebook Page IDs for the tab:
PAGES=[<page_id>,...]. The decorator needs to be called with the app name as parameter:

from facebook.decorators import redirect_to_page

@redirect_to_page('myapp')
def index(request):
 more code here.

Page Login

To allow an app to post to a Facebook Page, a page administrator needs to grant the app the
manage_pages permission.
If you have multiple apps, you have to define the following in settings.py:

DEFAULT_POST_APP = 'myapp'

You need to have a Facebook login button on the Page admin template and make sure you are
logged in.
Then select the pages you want to have the app access to and choose ‘Get an access token for
the selected page(s)’ from the admin actions. If everything worked out, you should have a
checkmark on the right. From now on your app can do the same things you can do.

Keep in mind that new access token expire after 60 days.

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	django-facebook-graph 0.1 documentation

Using django-facebook-graph with FeinCMS

The facebook page extension allows you to have several Facebook apps assigned to
different FeinCMS pages. This way you can have multiple tabs on your Facebook page
and manage them in a single admin.

Facebook Application Extension

In your models.py add:

from facebook.feincms.extensions import facebook_application

Page.register_extension(facebook_application)

Make sure you have installed the fb.Page module
In the FeinCMS admin add your Facebook pages. The FeinCMS pages have two additional fields
for the facebook app and page. If the page is set, the content can only be displayed within
that page.
The app is used to decrypt the signed request.

Content Type Extension

This is a monkey-patch for FeinCMS contents. It adds two fields: render_like and app_installed.
It allows to control if a content type is displayed whether a user has liked a page or not
or has installed the app.

Because it’s a monkey-patch the order of import is important (models.py):

from feincms.content.richtext.models import RichTextContent
from facebook.feincms.extensions import content_type_extension

content_type_extension(RichTextContent)

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	django-facebook-graph 0.1 documentation

Index

 Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

search.html

 Navigation

 		
 index

 		django-facebook-graph 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

Release_Notes.html

 Navigation

 		
 index

 		django-facebook-graph 0.1 documentation »

Django-facebook-graph Release Notes

Due to the high update cycle there are no version numbers. The release notes are structured by
the date the change has been added to the repo.

June 22, 2012

		Move game views to game module

		custom CSRF middleware is no longer necessary. Just put SignedRequestMiddleware in between SessionMiddleware
and Django’s csrfViewMiddleware.

May 19, 2012

		Add field ‘_access_token_expires’ to fb.Page model.

		Add field ‘created’ to fb.Post model.

		Add insight link to page

		Working deauthorize callback with preview

		docs update

 © Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

_static/down.png

_static/down-pressed.png

clientside.html

 Navigation

 		
 index

 		django-facebook-graph 0.1 documentation »

Client side (Javascript) reference

The FB object

This is the object generated by the Facebook Javascript SDK. It’s available
once the SDK is loaded and provides all the methods to interact with Facebook.
Check out the Facebook documentation at
http://developers.facebook.com/docs/reference/javascript/.

The fb object

This is a helper object generated by our facebook app. If the user is logged
in it stores some useful informations such as user info and permissions.
Feel free to add your own attributes. By default it provides the following
attributes if the user is logged in:

		
		auth

		
		accessToken: The user access token.

		expiresIn: Seconds until the access token expires.

		signedRequest: The signed request. SHA-1 encrypted.

		userID: The current user’s Facebook ID.

		get_perms(callback_fn)
This calls the callback function with a list containing the user’s
permissions. The reason to use this instead of FB.api is that the
permissions are cached.

		status
The status of the User. One of connected, notConnected or
unknown.

Helper functions

addTabToPage()

Opens the ‘Add this tab to your Facebook Page’ dialog.

canvas_resize()

FB.UI.resize() wrapper that works in IE without flash.

 © Copyright 2011, FEINHEIT GmbH.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_images/FB-app-settings.jpg
Migrations.

Remove Deprecated APls: (7]
Stream post URL security: (7]
signed_request for Canvas: (7]

Veranstaltungen ohne Zeitzone:
1

Upgrade to Requests 2.0: (7]
iframe Page Tabs: [2]
Require manage_notifications: (7]

Forces use of login secret for
OAuth call and for auth.login: (2]

Encrypted Access Token: (7]

Enhanced Auth Dialog: (7]

@ Aldiviert
O Aldiviert
@ Aliviert

@ Aktiviert

@ Aldiviert
@ Aldiviert
O Aldiviert

@ Aktiviert

@ Aktiviert

O Aktiviert

O Gesperrt
@ Gesperrt
O Gesperrt

O Gesperrt

O Gesperrt
O Gesperrt
@ Gesperrt

O Gesperrt

O Gesperrt

@ Gesperrt

